International audienceA common approach for analysis of anatomical variability relies on the stimation of a template representative of the population. The Large Deformation Diffeomorphic Metric Mapping is an attractive framework for that purpose. However, template estimation using LDDMM is computationally expensive, which is a limitation for the study of large datasets. This paper presents an iterative method which quickly provides a centroid of the population in the shape space. This centroid can be used as a rough template estimate or as initialization of a template estimation method. The approach is evaluated on datasets of real and synthetic hippocampi segmented from brain MRI. The results show that the centroid is correctly centered wi...