Over recent years, a study on risk management has been prompted by the Basel committee for regular banking supervisory. There are however limitations of some widely-used risk management methods that either calculate risk measures under the Gaussian distributional assumption or involve numerical difficulty. The primary aim of this paper is to present a realistic and fast method, GHICA, which overcomes the limitations in multivariate risk analysis. The idea is to first retrieve independent components (ICs) out of the observed high-dimensional time series and then individually and adaptively fit the resulting ICs in the generalized hyperbolic (GH) distributional framework. For the volatility estimation of each IC, the local exponential smoothi...