International audienceThis paper introduces a general method for a particle solution to optimal non- linear estimation in signal processing. We deal here with the class of discrete time Markov processes, to which the estimation problems of RADAR/SONAR signalprocessing belong.The main feature of particle resolution is that it generates a global picture of the probability space and therefore provides all desirable estimators (maximum likelyhood, minimum variance, etc . . . ). Its algorithmic principle relies on a dynamic version of Monte-Carlo principles and is independant of dynamic complexity (in particular the nature of non-linearities). It is on the number of noise variables that the size of the number of particles depends, according to r...
In this paper, a theoretical expression of the optimum non-Gaussian radar detector is derived from t...
Abstract—Increasingly, for many application areas, it is becoming important to include elements of n...
Ce travail est consacré au problème d'estimation non paramétrique dans des modèles de régression en ...
International audienceThis paper introduces a general method for a particle solution to optimal non-...
This memoir develops a global approach of the radar tracking problem for manoeuvering targets with l...
International audienceWe show here the benefits on radar signal processing, of a general non-linear ...
This report describes the application of optimal nonlinear/non-Gaussian filtering to the radar signa...
National audienceParticle filter is now a well-knwon numeric solution for the non-linear estimation ...
The purpose of filtering is to estimate the posterior distribution of the state of a dynamic system ...
Optimal filtering problems are ubiquitous in signal processing and related fields. Except for a rest...
This thesis is about tracking several independent targets, using measurements collected by sensors o...
In this letter, we propose and prove the asymptotic optimality of a particle-filter-based detection ...
Nous présentons un détecteur sonar d'un signal connu en présence d'un bruit de type mélange gaussien...
On montre l'avancée techniquement possible, dans le traitement des signaux RADAR, par une approche g...
This thesis is about bayesian networks, particle filters and their application to digital communicat...
In this paper, a theoretical expression of the optimum non-Gaussian radar detector is derived from t...
Abstract—Increasingly, for many application areas, it is becoming important to include elements of n...
Ce travail est consacré au problème d'estimation non paramétrique dans des modèles de régression en ...
International audienceThis paper introduces a general method for a particle solution to optimal non-...
This memoir develops a global approach of the radar tracking problem for manoeuvering targets with l...
International audienceWe show here the benefits on radar signal processing, of a general non-linear ...
This report describes the application of optimal nonlinear/non-Gaussian filtering to the radar signa...
National audienceParticle filter is now a well-knwon numeric solution for the non-linear estimation ...
The purpose of filtering is to estimate the posterior distribution of the state of a dynamic system ...
Optimal filtering problems are ubiquitous in signal processing and related fields. Except for a rest...
This thesis is about tracking several independent targets, using measurements collected by sensors o...
In this letter, we propose and prove the asymptotic optimality of a particle-filter-based detection ...
Nous présentons un détecteur sonar d'un signal connu en présence d'un bruit de type mélange gaussien...
On montre l'avancée techniquement possible, dans le traitement des signaux RADAR, par une approche g...
This thesis is about bayesian networks, particle filters and their application to digital communicat...
In this paper, a theoretical expression of the optimum non-Gaussian radar detector is derived from t...
Abstract—Increasingly, for many application areas, it is becoming important to include elements of n...
Ce travail est consacré au problème d'estimation non paramétrique dans des modèles de régression en ...