Experimental stylolites have been observed at stressed contacts between quartz grains loaded for a period of several months in presence of aqueous silica solution, at 350°C under 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images, processed in the same way as earth-surface elevation data gives the stylolites topography. Coupled with observations of closed interactions between dissolution pits and stylolitic peaks, these data illuminate the mechanism of stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in favored locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical m...