In this work, we present results on the unavoidable structures in large connected and large 2-connected graphs. For the relation of induced subgraphs, Ramsey proved that for every positive integer r, every sufficiently large graph contains as an induced subgraph either Kr or Kr. It is well known that, for every positive integer r, every sufficiently large connected graph contains an induced subgraph isomorphic to one of Kr, K1,r, and Pr. We prove an analogous result for 2-connected graphs. Similarly, for infinite graphs, every infinite connected graph contains an induced subgraph isomorphic to one of the following: an infinite complete graph, an infinite star, and a ray. Using some techniques from the finite result, we give the unavoidable ...