Itô’s stochastic calculus revolutionized the field of stochastic analysis and has found numerous applications in a wide variety of disciplines. Itô’s theory, even though quite general, cannot handle anticipating stochastic processes as integrands. There have been considerable efforts within the mathematical community to extend Itô’s calculus to account for anticipation. The Ayed–Kuo integral — introduced in 2008 — is one of the most recent developments. It is arguably the most accessible among the theories extending Itô’s calculus — relying solely on probabilistic methods. In this dissertation, we look at the recent advances in this area, highlighting our contributions. First, we extend the class of linear stochastic differential equations ...