This paper investigates a parallel problem to Glover (1984): approximate a multivariable transfer function G(z) of McMillan degree n by Ĝ(z) of McMillan degree smaller than k in discrete-time. A state-space solution is derived to the optimal Hankel-norm approximation problem, together with characterization to all optimal Hankel-norm approximations. It is shown that the L∞ error bound derived in Glover (1984) holds for discrete-time systems as well. © 2005 Taylor & Francis Group Ltd
Abstract. It has been demonstrated by N. T. Young [NATO ASI Series F34, Springer-Verlag, Berlin, New...
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener cla...
Optimal Hankel norm model reduction for dynamical systems is of great significance in model-based si...
This paper investigates a parallel problem to [5]: approximate a multivariable transfer function G(z...
A self-contained derivation is presented of the characterization of all optimal Hankel-norm approxim...
The optimal Hankel norm approximation problem is solved for a class of infinite-dimensional systems ...
© Copyright 2008 IEEE – All Rights ReservedA new unified solution to the optimal Hankel norm approxi...
Given a stable rational transfer function G(s) and weighting function W(s), the problem of finding G...
The optimal Hankel norm approximation problem is solved under the assumptions that the system Sigma ...
Model reduction is an important engineering problem, in which one aims to replace an elaborate model...
The sub-optimal Hankel norm approximation problem is solved for a well-posed linear system with gene...
The classical time-invariant Hankel-norm approximation problem is generalized to the time-varying co...
[[abstract]]The best approximation in the optimal solution set of the Hankel-norm model reduction pr...
The problem of Hankel norm model reduction for discrete-time systems with time-varying state delay i...
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener cla...
Abstract. It has been demonstrated by N. T. Young [NATO ASI Series F34, Springer-Verlag, Berlin, New...
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener cla...
Optimal Hankel norm model reduction for dynamical systems is of great significance in model-based si...
This paper investigates a parallel problem to [5]: approximate a multivariable transfer function G(z...
A self-contained derivation is presented of the characterization of all optimal Hankel-norm approxim...
The optimal Hankel norm approximation problem is solved for a class of infinite-dimensional systems ...
© Copyright 2008 IEEE – All Rights ReservedA new unified solution to the optimal Hankel norm approxi...
Given a stable rational transfer function G(s) and weighting function W(s), the problem of finding G...
The optimal Hankel norm approximation problem is solved under the assumptions that the system Sigma ...
Model reduction is an important engineering problem, in which one aims to replace an elaborate model...
The sub-optimal Hankel norm approximation problem is solved for a well-posed linear system with gene...
The classical time-invariant Hankel-norm approximation problem is generalized to the time-varying co...
[[abstract]]The best approximation in the optimal solution set of the Hankel-norm model reduction pr...
The problem of Hankel norm model reduction for discrete-time systems with time-varying state delay i...
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener cla...
Abstract. It has been demonstrated by N. T. Young [NATO ASI Series F34, Springer-Verlag, Berlin, New...
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener cla...
Optimal Hankel norm model reduction for dynamical systems is of great significance in model-based si...