International audienceAs in a previous Note [3] we study the asymptotic behaviour of several non-linear functionals of the empirical bridge in the super-optimal case. We consider the asymptotic behaviour of the number of crossings for the perturbed process in case the window satisfies $\sqrt{n}h^{2} \to +\infty$; applications of the asymptotics are found. We also obtain a central limit theorem for the integrated square error of density estimators and in general for a G-deviation in density estimation and for the Kullback deviation in the super-optimal case
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
summary:The asymptotic behavior of global errors of functional estimates plays a key role in hypothe...
We derive the asymptotic distribution of the integrated square error of a deconvolution kernel densi...
International audienceWe consider regularizations by convolution of the empirical process and study ...
International audienceWe consider regularizations by convolution of the empirical process and study ...
Note présentée par Jean-Pierre KahaneInternational audienceWe study the asymptotic behaviour of seve...
Note présentée par Jean-Pierre KahaneInternational audienceWe study the asymptotic behaviour of seve...
In this paper we consider a kernel estimator of a density in a convolution model and give a central ...
We provide new asymptotic theory for kernel density estimators, when these are applied to autoregres...
We provide new asymptotic theory for kernel density estimators, when these are applied to autoregres...
Nonparametric kernel estimation of density is widely used, how-ever, many of the pointwise and globa...
In this paper we consider a kernel estimator of a density in a convolution model and give a central ...
Let R(,L(,1))(f(,n),f), R(,K)(f(,n),f) be the risks of the density estimator f(,n) of(\u27 ) the den...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
summary:The asymptotic behavior of global errors of functional estimates plays a key role in hypothe...
We derive the asymptotic distribution of the integrated square error of a deconvolution kernel densi...
International audienceWe consider regularizations by convolution of the empirical process and study ...
International audienceWe consider regularizations by convolution of the empirical process and study ...
Note présentée par Jean-Pierre KahaneInternational audienceWe study the asymptotic behaviour of seve...
Note présentée par Jean-Pierre KahaneInternational audienceWe study the asymptotic behaviour of seve...
In this paper we consider a kernel estimator of a density in a convolution model and give a central ...
We provide new asymptotic theory for kernel density estimators, when these are applied to autoregres...
We provide new asymptotic theory for kernel density estimators, when these are applied to autoregres...
Nonparametric kernel estimation of density is widely used, how-ever, many of the pointwise and globa...
In this paper we consider a kernel estimator of a density in a convolution model and give a central ...
Let R(,L(,1))(f(,n),f), R(,K)(f(,n),f) be the risks of the density estimator f(,n) of(\u27 ) the den...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
The best mean square error that the classical kernel density estimator achieves if the kernel is non...
summary:The asymptotic behavior of global errors of functional estimates plays a key role in hypothe...
We derive the asymptotic distribution of the integrated square error of a deconvolution kernel densi...