GH3625 alloy is a typical polycrystalline material. The mechanical properties of a crystal within the alloy depend on the single crystal properties, lattice orientation, and orientations of neighboring crystals. However, accurate determination of single crystal properties is critical in developing a quantitative understanding of the micromechanical behavior of GH3625. In this study, the effect of deformation rate on the elastoplastic deformation behavior of GH3625 was investigated using in situ neutron diffraction room-temperature compression experiments, EBSD, and TEM. The results showed that the microscopic stress-strain curve included elastic deformation (applied stress σ ≤ 300 MPa), elastoplastic transition (300 MPa σ ≤ 350 MPa), and pl...