A practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenar...