This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordMany real-world multi-objective optimisation problems rely on computationally expensive function evaluations. Multi-objective Bayesian optimisation (BO) can be used to alleviate the computation time to find an approximated set of Pareto optimal solutions. In many real-world problems, a decision-maker has some preferences on the objective functions. One approach to incorporate the preferences in multi-objective BO is to use a scalarising function and build a single surrogate model (mono-surrogate approach) on it. This approach has two major limitations. Firstly, the fitness landscape of the scalarising function and the objective function...