Clustering techniques aim organizing data into groups whose members are similar. A key element of these techniques is the definition of a similarity measure. The information bottleneck method provides us a full solution of the clustering problem with no need to define a similarity measure, since a variable X is clustered depending on a control variable Y by maximizing the mutual information between them. In this paper, we propose a hierarchical clustering algorithm based on the information bottleneck method such that, instead of using a control variable, the different possible values of a Markov process are clustered by maximally preserving the mutual information between two consecutive states of the Markov process. These two states can be ...