We report on experiments with a novel family of Krylov subspace methods for solving dense, complex, non-Hermitian systems of linear equations arising from the Galerkin discretization of surface integral equation models in Electromagnetics. By some experiments on realistic radar-cross-section calculation, we illustrate the numerical efficiency of the proposed class of algorithms also against other popular iterative techniques in use today.</p
Boundary element discretizations of exterior Maxwell problems lead to dense complex non-Hermitian sy...
In these lecture notes an introduction to Krylov subspace solvers and preconditioners is presented. ...
sults indicate that a well chosen preconditioned Krylov iterative method maintains the computational...
We report on experiments with a novel family of Krylov subspace methods for solving dense, complex, ...
In this paper, we describe a matrix-free iterative algorithm based on the GMRES method for solving e...
When solving PDE's by means of numerical methods one often has to deal with large systems of linear ...
We present a sparse preconditioner for efficient iterative solution of large dense linear systems th...
We propose novel parallel preconditioning schemes for the iterative solution of integral equation me...
. We describe the iterative solution of dense linear systems arising from a surface integral equatio...
We report the solution of the largest integral-equation problems in computational electromagnetics. ...
AbstractThe approximate solutions in standard iteration methods for linear systems Ax=b, with A an n...
Practical applications of controlled-source electromagnetic (EM) modelling require solutions for mul...
The method of moments solution of the Maxwell’s equations leads to a dense system of complex equatio...
In this letter, we consider iterative solutions of the three-dimensional electromagnetic scattering ...
We consider a time-harmonic electromagnetic scattering problem for an inhomogeneous medium. Some sym...
Boundary element discretizations of exterior Maxwell problems lead to dense complex non-Hermitian sy...
In these lecture notes an introduction to Krylov subspace solvers and preconditioners is presented. ...
sults indicate that a well chosen preconditioned Krylov iterative method maintains the computational...
We report on experiments with a novel family of Krylov subspace methods for solving dense, complex, ...
In this paper, we describe a matrix-free iterative algorithm based on the GMRES method for solving e...
When solving PDE's by means of numerical methods one often has to deal with large systems of linear ...
We present a sparse preconditioner for efficient iterative solution of large dense linear systems th...
We propose novel parallel preconditioning schemes for the iterative solution of integral equation me...
. We describe the iterative solution of dense linear systems arising from a surface integral equatio...
We report the solution of the largest integral-equation problems in computational electromagnetics. ...
AbstractThe approximate solutions in standard iteration methods for linear systems Ax=b, with A an n...
Practical applications of controlled-source electromagnetic (EM) modelling require solutions for mul...
The method of moments solution of the Maxwell’s equations leads to a dense system of complex equatio...
In this letter, we consider iterative solutions of the three-dimensional electromagnetic scattering ...
We consider a time-harmonic electromagnetic scattering problem for an inhomogeneous medium. Some sym...
Boundary element discretizations of exterior Maxwell problems lead to dense complex non-Hermitian sy...
In these lecture notes an introduction to Krylov subspace solvers and preconditioners is presented. ...
sults indicate that a well chosen preconditioned Krylov iterative method maintains the computational...