In this paper we investigate the influence of self-affine roughness on the friction coefficient mu(f) of a rubber body under incomplete contact onto a solid surface. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that with increasing surface roughening at short and/or long length scales (decreasing H and/or increasing ratio w/xi, respectively), the maximum of the friction coefficient mu(f) shifts to lower sliding velocities. The latter occurs only for conditions of incomplete contact for small contact length scales lambda (</p