Unlike numerous pore-forming amphiphilic peptide antibiotics, the lantibiotic nisin is active in nanomolar concentrations, which results from its ability to use the Lipid-bound cell wall precursor lipid II as a docking molecule for subsequent pore formation. Here we use genetically engineered nisin variants to identify the structural requirements for the interaction of the peptide with lipid II. Mutations affecting the conformation of the N-terminal part of nisin comprising rings A through C, e.g. [S3T]nisin, led to reduced binding and increased the peptide concentration necessary for pore formation, The binding constant for the S3T mutant was 0.043 x 10(7) M-1 compared with 2 x 10(7) M-1 for the wildtype peptide, and the minimum concentrat...