Whereas it is easy to reduce the translational symmetry of a molecular system using, e.g., Jacobi coordinates, the situation is much more involved for rotational symmetry. In this paper, we address the latter problem using holonomy reduction. We suggest that the configuration space may be considered as the reduced holonomy bundle with a connection induced by the mechanical connection. Using the fact that for the special case of the three-body problem the holonomy group is SO(2) (as opposed to SO(3) like in systems with more than three bodies), we obtain a holonomy-reduced configuration space of topology R3+ × S1. The dynamics then takes place on the cotangent bundle over the holonomy-reduced configuration space. On this phase space, there i...