The current research in graphene spintronics strives for achieving a long spin lifetime, and efficient spin injection and detection in graphene. In this article, we review how hexagonal boron nitride (hBN) has evolved as a crucial substrate, as an encapsulation layer, and as a tunnel barrier for manipulation and control of spin lifetimes and spin injection/detection polarizations in graphene spin valve devices. First, we give an overview of the challenges due to conventional SiO2/Si substrate for spin transport in graphene followed by the progress made in hBN based graphene heterostructures. Then we discuss in detail the shortcomings and developments in using conventional oxide tunnel barriers for spin injection into graphene followed by in...