Learning vector quantization (LVQ) constitutes a powerful and intuitive method for adaptive nearest prototype classification. However, original LVQ has been introduced based on heuristics and numerous modifications exist to achieve better convergence and stability. Recently, a mathematical foundation by means of a cost function has been proposed which, as a limiting case, yields a learning rule similar to classical LVQ2.1. It also motivates a modification which shows better stability. However, the exact dynamics as well as the generalization ability of many LVQ algorithms have not been thoroughly investigated so far. Using concepts from statistical physics and the theory of on-line learning, we present a mathematical framework to analyse th...