We extend the notion of Gibbsianness for mean-field systems to the setup of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given local transition kernels. This generalizes previous case studies made for spins taking finitely many values to the first step in the direction to a general theory containing the following parts: (1) A formula for the limiting conditional probability distributions of the transformed system (it holds both in the Gibbs and in the non-Gibbs regime and invokes a minimization problem for a "constrained rate function"), (2) a criterion for Gibbsianness of the transformed system for initial Lipschitz-Hamilt...