Let be the real or the complex field, and let f : ⁿ → be a quasi-homogeneous polynomial with weight w := (w1, w2, . . . , wₙ) and degree d. Assume that ∇f(0) = 0. Lojasiewicz’s well known gradient inequality states that there exists an open neighbourhood U of the origin in ⁿ and two positive constants c and ρ < 1 such that for any x ∈ U we have $ ||∇f(x)k|| ≥ c|f(x)|^\rho$. We prove that if the set $ \tilde{K}_\infty (f) $ of points where the Fedoryuk condition fails to hold is finite, then the gradient inequality holds true with $ \rho=1-\text{min}_j {w_j}/d $. It is also shown that if n = 2, then $ \tilde{K}_\infty (f) $ is either empty or reduced to {0}
International audienceWe consider degree-d forms on the Euclidean unit sphere. We specialize to our ...
We show that gradient trajectories of a denable (in an o-minimal structure) family of functions are ...
Abstract. Remez-type inequalities provide upper bounds for the uniform norms of polynomials on give...
Résumé. Soit K le corps des réels ou des complexes et f: Kn → K un polynôme quasi-homogène de p...
Quasi-homogeneous functions, and especially polynomials, enjoy some specific properties around the o...
Abstract. Let f: Rn! R be a polynomial function. We discuss on dierent conditions to trivialise the ...
Résumé. Les fonctions quasi-homogènes, en particulier les polynômes, possèdent des propriétés...
To any polynomial $fin K[x_0, ldots, x_n]$, where $K$ is a field of characteristic $p>0$, one can at...
In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set...
Let $\mathscr{F}$ be a class of functions with the uniqueness property: if $f \in \mathscr{F}$ vanis...
Let $\mathscr{F}$ be a class of functions with the uniqueness property: if $f\in \mathscr{F}$ vanis...
Dans ce travail, nous étudions un type de champs de vecteurs plus large que les champs de gradient p...
This work is devoted to the study of the trajectories of gradient vector fields of functions definab...
Recibido: 17 de enero de 2005 Aceptado: 28 de abril de 2005 Let f be a C1 function defined over Rn a...
Let be a function defined over and definable in a given o-minimal structure expanding the real field...
International audienceWe consider degree-d forms on the Euclidean unit sphere. We specialize to our ...
We show that gradient trajectories of a denable (in an o-minimal structure) family of functions are ...
Abstract. Remez-type inequalities provide upper bounds for the uniform norms of polynomials on give...
Résumé. Soit K le corps des réels ou des complexes et f: Kn → K un polynôme quasi-homogène de p...
Quasi-homogeneous functions, and especially polynomials, enjoy some specific properties around the o...
Abstract. Let f: Rn! R be a polynomial function. We discuss on dierent conditions to trivialise the ...
Résumé. Les fonctions quasi-homogènes, en particulier les polynômes, possèdent des propriétés...
To any polynomial $fin K[x_0, ldots, x_n]$, where $K$ is a field of characteristic $p>0$, one can at...
In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set...
Let $\mathscr{F}$ be a class of functions with the uniqueness property: if $f \in \mathscr{F}$ vanis...
Let $\mathscr{F}$ be a class of functions with the uniqueness property: if $f\in \mathscr{F}$ vanis...
Dans ce travail, nous étudions un type de champs de vecteurs plus large que les champs de gradient p...
This work is devoted to the study of the trajectories of gradient vector fields of functions definab...
Recibido: 17 de enero de 2005 Aceptado: 28 de abril de 2005 Let f be a C1 function defined over Rn a...
Let be a function defined over and definable in a given o-minimal structure expanding the real field...
International audienceWe consider degree-d forms on the Euclidean unit sphere. We specialize to our ...
We show that gradient trajectories of a denable (in an o-minimal structure) family of functions are ...
Abstract. Remez-type inequalities provide upper bounds for the uniform norms of polynomials on give...