Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set (sets) of rules characterizing a two-argument Boolean function(s) to the negation fragment of classical propositional logic. The properties of soundness and completeness of the calculi are demonstrated. The proof of completeness is conducted by Kalmár's method. Most of the presented sequent-calculus rules have been obtained automatically, by a rule-generating algor...