A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of $(K_{m,n};1)$-vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, $Q(K_{m,n};1) = mn+m+n$ and $K_{m,n}*K₁$ as well as $K_{m+1,n+1} - e$ are the only $(K_{m,n};1)$-vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek
AbstractThe stability number α(G) of a graph G is the size of a maximum stable set of G, core(G)=⋂{S...
AbstractWe give a O(nm) time algorithm for the maximum weight stable set (MWS) problem on P5- and co...
We present a method which provides a unified framework for most stability theorems that have been pr...
Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k ver...
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its...
Let H be any graph. We say that graph G is H-stable if G — u contains a subgraph isomorphic to H for...
AbstractA graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even after ...
Tyt. z nagłówka.Bibliogr. s. 913-914.Let H be any graph. We say that graph G is H-stable if G−u cont...
AbstractA graph G is a (Kq,k) vertex stable graph if it contains a Kq after deleting any subset of k...
A graph G is (Kq; k) stable if it contains a copy of Kq after deleting any subset of k vertices. In ...
A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k verti...
AbstractA graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even after ...
In this project, we explore the results of the article On (Kq; k)-Stable Graphs by Andrzej ak [4]. ...
A graph G is a (K_q; k) vertex stable graph (q >= 3) if it contains a clique K_q after deleting any ...
AbstractThe stability number α(G) of a graph G is the cardinality of a stability system of G (that i...
AbstractThe stability number α(G) of a graph G is the size of a maximum stable set of G, core(G)=⋂{S...
AbstractWe give a O(nm) time algorithm for the maximum weight stable set (MWS) problem on P5- and co...
We present a method which provides a unified framework for most stability theorems that have been pr...
Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k ver...
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its...
Let H be any graph. We say that graph G is H-stable if G — u contains a subgraph isomorphic to H for...
AbstractA graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even after ...
Tyt. z nagłówka.Bibliogr. s. 913-914.Let H be any graph. We say that graph G is H-stable if G−u cont...
AbstractA graph G is a (Kq,k) vertex stable graph if it contains a Kq after deleting any subset of k...
A graph G is (Kq; k) stable if it contains a copy of Kq after deleting any subset of k vertices. In ...
A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k verti...
AbstractA graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even after ...
In this project, we explore the results of the article On (Kq; k)-Stable Graphs by Andrzej ak [4]. ...
A graph G is a (K_q; k) vertex stable graph (q >= 3) if it contains a clique K_q after deleting any ...
AbstractThe stability number α(G) of a graph G is the cardinality of a stability system of G (that i...
AbstractThe stability number α(G) of a graph G is the size of a maximum stable set of G, core(G)=⋂{S...
AbstractWe give a O(nm) time algorithm for the maximum weight stable set (MWS) problem on P5- and co...
We present a method which provides a unified framework for most stability theorems that have been pr...