A k-uniform hypergraph H = (V;E) is called self-complementary if there is a permutation σ:V → V, called self-complementing, such that for every k-subset e of V, e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with $H' = (V; \binom{V}{k} - E)$. In the present paper, for every k, (1 ≤ k ≤ n), we give a characterization of self-complementig permutations of k-uniform self-complementary hypergraphs of the order n. This characterization implies the well known results for self-complementing permutations of graphs, given independently in the years 1962-1963 by Sachs and Ringel, and those obtained for 3-uniform hypergraphs by Kocay, for 4-uniform hypergraphs by Szymański, and for general (not uniform) hypergraphs by Zwonek