The colossal solution spaces of most configurable systems make intractable their exhaustive exploration. Accordingly, relevant anal-yses remain open research problems. There exist analyses alterna-tives such as SAT solving or constraint programming. However, none of them have explored simulation-based methods. Monte Carlo-based decision making is a simulation based method for deal-ing with colossal solution spaces using randomness. This paper proposes a conceptual framework that tackles various of those anal-yses using Monte Carlo methods, which have proven to succeed in vast search spaces (e.g., game theory). Our general framework is described formally, and its flexibility to cope with a diversity of analysis problemsis discussed...