International audienceThis paper addresses a cornerstone of Automated Machine Learning: the problem of rapidly uncovering which machine learning algorithm performs best on a new dataset. Our approach leverages performances of such algorithms on datasets to which they have been previously exposed, i.e., implementing a form of meta-learning. More specifically, the problem is cast as a REVEAL Reinforcement Learning (RL) game: the meta-learning problem is wrapped into a RL environment in which an agent can start, pause, or resume training various machine learning algorithms to progressively "reveal" their learning curves. The learned policy is then applied to quickly uncover the best algorithm on a new dataset. While other similar approaches, s...