International audienceThe Gaussian kernel least-mean-square (Gaussian KLMS) algorithm has been studied under different implementation conditions. Though analytical models that predict its behavior are available, methodologies for determining the algorithm parameter values to satisfy given design criteria is still missing from the literature. In this paper we propose, test, and validate a methodology for the design of the Gaussian KLMS algorithm. Designing the algorithm consists in selecting adequate values for its free parameters from available theoretical performance models. These parameters comprise the filter length, the adaptive step-size, and the kernel bandwidth. The objective is to achieve specific design objectives, e.g., fast conve...
Abstract—The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provide...
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Gradu...
This paper studies the convergence behaviors of the fast least mean M-estimate/Newton adaptive filte...
International audienceThe kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlin...
The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
Abstract—The kernel least mean squares (KLMS) algorithm is a computationally efficient nonlinear ada...
Abstract—The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provide...
In this paper, the tracking behavior of the ∈-normalized sign-error least mean square (NSLMS) algori...
Abstract In this paper, we study the mean square convergence of the kernel least mean square (KLMS)...
This paper proposes two modifications of the filtered-x least mean squares (FxLMS) algorithm with im...
In this paper, the kernel proportionate normalized least mean square algorithm (KPNLMS) is proposed....
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau...
In this letter, a novel kernel adaptive filtering algorithm, namely the kernel least mean square wit...
Abstract—The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provide...
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Gradu...
This paper studies the convergence behaviors of the fast least mean M-estimate/Newton adaptive filte...
International audienceThe kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlin...
The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
Abstract—The kernel least mean squares (KLMS) algorithm is a computationally efficient nonlinear ada...
Abstract—The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provide...
In this paper, the tracking behavior of the ∈-normalized sign-error least mean square (NSLMS) algori...
Abstract In this paper, we study the mean square convergence of the kernel least mean square (KLMS)...
This paper proposes two modifications of the filtered-x least mean squares (FxLMS) algorithm with im...
In this paper, the kernel proportionate normalized least mean square algorithm (KPNLMS) is proposed....
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau...
In this letter, a novel kernel adaptive filtering algorithm, namely the kernel least mean square wit...
Abstract—The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provide...
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Gradu...
This paper studies the convergence behaviors of the fast least mean M-estimate/Newton adaptive filte...