International audienceGravitational collapse of dark matter, merger of dark matter haloes and tidal disruption of satellites are among processes which lead to the formation of fine and dense dark matter shells, also known as dark matter caustics. The putative weakly interacting species which may form the dark matter are expected to strongly annihilate in these dense regions of the Milky Way halo and generate in particular antiprotons and positrons. We derive the flux of these rare antimatter particles at the Earth and show that it depends significantly on the cut-off radius of the dark matter distribution at the Galactic centre. Boost factors of ~30 are found with respect to a smooth Navarro, Frenk & White (NFW) profile for high-energy anti...