International audienceAutomatic parallel code generation from high-level abstractions such as those manipulated by artificial intelligence and deep learning (AI/DL) frameworks heavily rely on compiler techniques for automatic parallelization and optimization. Many recent advances rely on the polyhedral framework for this task because of its ability to model and to apply a wide range of loop transformations. However, modeling the complexity of the target architecture and of efficient cost models to decide about the best transformation is in general out of reach for a framework based on linear/affine constraints. In this work, we propose to decouple the polyhedral framework into linear and non-linear components. We introduce the constraint tr...