In an industrial context, reduced-order two-phase models are used in predictive simulations of the liquid fuel injection in combustion chambers and help designing more efficient and less polluting devices. The combustion quality strongly depends on the atomization process, starting from the separated phase flow at the exit of the nozzle down to the cloud of fuel droplets characterized by a disperse-phase flow. Today, simulating all the physical scales involved in this process requires a major breakthrough in terms of modeling, numerical methods and high performance computing (HPC). These three aspects are addressed in this thesis. First, we are interested in mixture models, derived through Hamilton’s variational principle and the second pri...