A Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional complex data on a two-dimensional map. We modified the conventional SOM to genome informatics, making the learning process and resulting map independent of the order of data input, and developed a novel bioinformatics tool for phylogenetic classification of sequence fragments obtained from pooled genome samples of microorganisms in environmental samples allowing visualization of microbial diversity and the relative abundance of microorganisms on a map. First we constructed SOMs of tri- and tetranucleotide frequencies from a total of 3.3-Gb of sequences derived using 113 prokaryotic and 13 eukaryotic genomes, for which complete genome sequences a...