Quasi-interpretations are a technique to guarantee complexity bounds on first-order functional programs: with termination orderings they give in particular a sufficient condition for a program to be executable in polynomial time, called here the P-criterion. We study properties of the programs satisfying the P-criterion, in order to better understand its intensional expressive power. Given a program on binary lists, its blind abstraction is the non-deterministic program obtained by replacing lists by their lengths (natural numbers). A program is blindly polynomial if its blind abstraction terminates in polynomial time. We show that all programs satisfying a variant of the P-criterion are in fact blindly polynomial. Then we give two extensio...