6 pagesInternational audienceParallel and heterogeneous computing are growing in audience thanks to the increased performance brought by ubiquitous manycores and GPUs. However, available programming models, like OPENCL or CUDA, are far from being straightforward to use. As a consequence, several automated or semi-automated approaches have been proposed to automatically generate hardware-level codes from high-level sequential sources. Polyhedral models are becoming more popular because of their combination of expressiveness, compactness, and accurate abstraction of the data-parallel behaviour of programs. These models provide automatic or semi-automatic parallelization and code transformation capabilities that target such modern parallel arc...