Genome-wide Association Studies (GWAS) are conducted to identify single nucleotide polymorphisms (variants) associated with a phenotype within a specific population. These variants associated with diseases have a complex molecular aetiology with which they cause the disease phenotype. The genotyping data generated from subjects of study is of high dimensionality, which is a challenge. The problem is that the dataset has a large number of features and a relatively smaller sample size. However, statistical testing is the standard approach being applied to identify these variants that influence the phenotype of interest. The wide applications and abilities of Machine Learning (ML) algorithms promise to understand the effects of these va...