In the rotational spectroscopy community, several popular codes are available to treat multiple internal rotors in a molecule. In terms of the pros and cons of each code, it is often a difficult task to decide which program to apply to a specific internal rotation problem. We faced this issue when dealing with the spectroscopic fingerprint of 4-methylacetophenone (4MAP), recently investigated in the microwave region, which we here extended into the millimeterwave region. The methyl group attached to the phenyl ring in 4MAP undergoes internal rotation with a very low barrier of only 22 cm(-1). The acetyl methyl group features a much higher barrier of about 580 cm(-1). The performances of a program using the so-called local approach in terms...