In dieser Dissertationsarbeit wurde ein neuer Algorithmus zur numerischen Lösung des Minimierungsproblems mit Gradient Einschränkung entwickelt. Das Verfahren wurde im unendlich dimensionalen Raum mit Verwendung des verallgemeinerten (Newton) Differenzierungskonzepts hergeleitet. Das betrachtete Minimierungsproblem wurde regularisiert, um es mit uneingeschränktem Minimierungsproblem zu approximieren und Newton Differenzierbarkeit der punktweisen Maximum-Funktion zu erreichen. Mit Verwendung des abstrakten Theorem über das Semismooth Newton Verfahren im unendlichen Dimensionen, lässt es sich zu beweisen, dass Semismooth Newton Verfahren, angewendet für das regularisierten Problem, lokaler superlinearer Konvergenz in dem entsprechenden Funkti...
A general MoreauYosida-based framework for minimization problems subject to partial differential equ...
AbstractIt has long been known that variational inequality problems can be reformulated as nonsmooth...
The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise ...
A class of semismooth Newton methods for quadratic minimization problems subject to non-negativity c...
Abstract. Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinit...
The final publication (doi: 10.1016/j.camwa.2014.12.001) is available at Elsevier:http://www.science...
We are concerned with the globalization of a semismooth Newton method for l1-Tikhonov regularization...
Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensi...
We study convergence of a semismooth Newton method for generalized semi-infinite programming problem...
We consider the application of the globalized semismooth Newton method to the solution of (the KKT c...
Abstract In this paper, we consider the numerical method for solving finite-dimensional quasi-variat...
Projet PROMATHThis paper presents some new results in the theory of Newton type methods for variatio...
Abstract. In this paper we consider optimal control problems subject to a semilinear elliptic state ...
Abstract. Semi-smooth Newton methods for elliptic equations with gradi-ent constraints are investiga...
In the paper, a Newton-type method for the solution of generalized equations (GEs) is derived, where...
A general MoreauYosida-based framework for minimization problems subject to partial differential equ...
AbstractIt has long been known that variational inequality problems can be reformulated as nonsmooth...
The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise ...
A class of semismooth Newton methods for quadratic minimization problems subject to non-negativity c...
Abstract. Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinit...
The final publication (doi: 10.1016/j.camwa.2014.12.001) is available at Elsevier:http://www.science...
We are concerned with the globalization of a semismooth Newton method for l1-Tikhonov regularization...
Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensi...
We study convergence of a semismooth Newton method for generalized semi-infinite programming problem...
We consider the application of the globalized semismooth Newton method to the solution of (the KKT c...
Abstract In this paper, we consider the numerical method for solving finite-dimensional quasi-variat...
Projet PROMATHThis paper presents some new results in the theory of Newton type methods for variatio...
Abstract. In this paper we consider optimal control problems subject to a semilinear elliptic state ...
Abstract. Semi-smooth Newton methods for elliptic equations with gradi-ent constraints are investiga...
In the paper, a Newton-type method for the solution of generalized equations (GEs) is derived, where...
A general MoreauYosida-based framework for minimization problems subject to partial differential equ...
AbstractIt has long been known that variational inequality problems can be reformulated as nonsmooth...
The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise ...