International audienceModern signal processing (SP) methods rely very heavily on probability and statistics to solve challenging SP problems. SP methods are now expected to deal with ever more complex models, requiring ever more sophisticated computational inference techniques. This has driven the development of statistical SP methods based on stochastic simulation and optimization. Stochastic simulation and optimization algorithms are computationally intensive tools for performing statistical inference in models that are anal ytically intractable and beyond the scope of deterministic inference methods. They have been recently successfully applied to many difficult problems involving complex statistical models and sophisticated (often Bayes...