In this paper, we study the exclusive perpetual exploration problem with mobile anonymous and oblivious robots in a discrete space. Our results hold for the most generic settings: robots are asynchronous and are not given any sense of direction, so the left and right sense (\emph{i.e.} chirality) is decided by the adversary that schedules robots for execution, and may change between invocations of a particular robots (as robots are oblivious). We investigate both the minimal and the maximal number of robots that are necessary and sufficient to solve the exclusive perpetual exploration problem. On the minimal side, we prove that three deterministic robots are necessary and sufficient, provided that the size $n$ of the ring is at least $10$, ...