Let V be the weighted projective variety defined by a weighted homogeneous ideal J and C a maximal cone in the Gröbner fan of J with m rays. We construct a flat family over Am that assembles the Gröbner degenerations of V associated with all faces of C. This is a multi-parameter generalization of the classical one-parameter Gröbner degeneration associated to a weight. We explain how our family can be constructed from Kaveh-Manon's recent work on the classification of toric flat families over toric varieties: it is the pull-back of a toric family defined by a Rees algebra with base XC (the toric variety associated to C) along the universal torsor Am→XC. We apply this construction to the Grassmannians Gr(2,Cn) with their Plücker embeddings an...