The polyhedral model is a well-known compiler optimization framework for the analysis and transformation of affine loop nests. We present a new method concerning a difficult geometric operation that is raised by this model: the integer affine transformation of parametric Z-polytopes. The result of such a transformation is given by a worst-case exponential union of Z-polytopes. We also propose a polynomial algorithm (for fixed dimension), to count points in arbitrary unions of a fixed number of parametric Z-polytopes. We implemented these algorithms and compared them to other existing algorithms, for a set of applications to loop nest analysis and optimization
The polytope model is widely used in compiler analysis for representing a certain class of programs....
The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its...
Cette thèse est centrée sur les objets mathématiques formés de l'intersection entre un polyèdre rati...
International audienceThe polyhedral model is a well-known compiler optimization framework for the a...
The polyhedral model is a well-known framework for the analysis and transformation of affine loop ne...
Many affine loop nest analysis and optimization techniques are based on the well-known polyhedral mo...
Le modèle polyédrique est un formalisme utilisé en optimisation automatique de programmes. Il permet...
Le modèle polyédrique est un formalisme utilisé en optimisation automatique de programmes. Il perme...
Many compiler optimization techniques depend on the ability to calculate the number of integer value...
Cette thèse est centrée sur les objets mathématiques formés de l'intersection entre un polyèdre rati...
Although Barvinok's algorithm for counting lattice points in a rational polytope easily extends to l...
Many compiler techniques depend on the ability to count the number of integer points that satisfy a ...
Many compiler optimization techniques depend on the ability to calculate the number of elements that...
We prove a representation theorem of projections of sets of integer points by an integer matrix $W$....
HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific res...
The polytope model is widely used in compiler analysis for representing a certain class of programs....
The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its...
Cette thèse est centrée sur les objets mathématiques formés de l'intersection entre un polyèdre rati...
International audienceThe polyhedral model is a well-known compiler optimization framework for the a...
The polyhedral model is a well-known framework for the analysis and transformation of affine loop ne...
Many affine loop nest analysis and optimization techniques are based on the well-known polyhedral mo...
Le modèle polyédrique est un formalisme utilisé en optimisation automatique de programmes. Il permet...
Le modèle polyédrique est un formalisme utilisé en optimisation automatique de programmes. Il perme...
Many compiler optimization techniques depend on the ability to calculate the number of integer value...
Cette thèse est centrée sur les objets mathématiques formés de l'intersection entre un polyèdre rati...
Although Barvinok's algorithm for counting lattice points in a rational polytope easily extends to l...
Many compiler techniques depend on the ability to count the number of integer points that satisfy a ...
Many compiler optimization techniques depend on the ability to calculate the number of elements that...
We prove a representation theorem of projections of sets of integer points by an integer matrix $W$....
HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific res...
The polytope model is widely used in compiler analysis for representing a certain class of programs....
The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its...
Cette thèse est centrée sur les objets mathématiques formés de l'intersection entre un polyèdre rati...