Forecasting of stock prices has been a challenging area due to its complex and dynamic nature. There are several evidences that traditional econometrics based predictive models encountered significant challenges due to parameter instability. The aim of this study is to apply three classifiers namely, Random Forest (RF), Support Vector Machines (SVM) and Neural Networks (NN) to predict the Pakistani stock market’s direction and to compare the prediction accuracy. Daily closing prices are collected from yahoo server from 2013 to 2018. Famous 30 market indicators are applied to predict the market direction by using Random Forest, Support Vector Machines and Neural Networks. Model accuracy is evaluated using the confusion matrix. The empirical ...