International audienceArithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given such a group Gamma, returns a fundamental domain and a finite presentation for Gamma with a computable isomorphism
summary:$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\ra...
Abstract. We give an arithmetic criterion which is sufficient to imply the discreteness of various t...
A Kleinian group is a discrete group of linear fractional transformations (Möbius maps) acting on th...
Arithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given...
We present an algorithm which, given an arithmetic Kleinian group Γ, returns a fundamental domain an...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
textThis thesis investigates the structure and properties of hyperbolic 3-manifold groups (particula...
textThis thesis investigates the structure and properties of hyperbolic 3-manifold groups (particula...
SIGLEAvailable from British Library Document Supply Centre- DSC:DX84080 / BLDSC - British Library Do...
For n > 2, let Gamma _n denote either SL(n, {Z}) or Sp(n, {Z}). We give a practical algorithm to com...
summary:$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\ra...
For n > 2, let Gamma _n denote either SL(n, {Z}) or Sp(n, {Z}). We give a practical algorithm to com...
AbstractThe paper develops algorithmic methods to enumerate all normal subgroups of a finitely prese...
summary:$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\ra...
Abstract. We give an arithmetic criterion which is sufficient to imply the discreteness of various t...
A Kleinian group is a discrete group of linear fractional transformations (Möbius maps) acting on th...
Arithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given...
We present an algorithm which, given an arithmetic Kleinian group Γ, returns a fundamental domain an...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algo...
textThis thesis investigates the structure and properties of hyperbolic 3-manifold groups (particula...
textThis thesis investigates the structure and properties of hyperbolic 3-manifold groups (particula...
SIGLEAvailable from British Library Document Supply Centre- DSC:DX84080 / BLDSC - British Library Do...
For n > 2, let Gamma _n denote either SL(n, {Z}) or Sp(n, {Z}). We give a practical algorithm to com...
summary:$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\ra...
For n > 2, let Gamma _n denote either SL(n, {Z}) or Sp(n, {Z}). We give a practical algorithm to com...
AbstractThe paper develops algorithmic methods to enumerate all normal subgroups of a finitely prese...
summary:$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\ra...
Abstract. We give an arithmetic criterion which is sufficient to imply the discreteness of various t...
A Kleinian group is a discrete group of linear fractional transformations (Möbius maps) acting on th...