Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general model for decision-making under uncertainty in cooperative decentralized settings, but are difficult to solve optimally (NEXP-Complete). As a new way of solving these problems, we introduce the idea of transforming a Dec-POMDP into a continuous-state deterministic MDP with a piecewise-linear and convex value function. This approach makes use of the fact that planning can be accomplished in a centralized offline manner, while execution can still be distributed. This new Dec-POMDP formulation, which we call an occupancy MDP, allows powerful POMDP and continuous-state MDP methods to be used for the first time. When the curse of dimensionality becomes to...
People go through their life making all kinds of decisions, and some of these decisions affect their...
Les processus décisionnels de Markov partiellement observables possibilistes qualita- tifs (π-PDMPO)...
Partially Observable Markov Decision Processes (POMDPs) model sequential decision-making problems un...
National audienceNous présentons un nouvel algorithme de planification pour la construction de systè...
National audienceRésoudre optimalement des processus décisionnels de Markov partiellement observable...
National audienceMany non-trivial sequential decision-making problems are efficiently solved by rely...
National audienceNous nous intéressons au problème consistant à trouver une politique jointe optimal...
International audienceDans cet article, nous nous intéressons à la résolution de problèmes de collec...
Bandits are one of the most basic examples of decision-making with uncertainty. A Markovian restless...
National audienceReinforcement Learning (RL) for decentralized partially observable Markov decision ...
National audienceSolving a 2-player zero-sum partially observable stochastic game (zs-POSG) typicall...
National audienceNous proposons une approche heuristique pour calculer une politique approchée d'un ...
In PDE-constrained optimization, iterative algorithms are commonly efficiently accelerated by techni...
A wealth of mathematical tools allowing to model and analyse multi-agent systems has been brought fo...
Many problems in machine learning pertain to tackling the minimization of a possibly non-convex and ...
People go through their life making all kinds of decisions, and some of these decisions affect their...
Les processus décisionnels de Markov partiellement observables possibilistes qualita- tifs (π-PDMPO)...
Partially Observable Markov Decision Processes (POMDPs) model sequential decision-making problems un...
National audienceNous présentons un nouvel algorithme de planification pour la construction de systè...
National audienceRésoudre optimalement des processus décisionnels de Markov partiellement observable...
National audienceMany non-trivial sequential decision-making problems are efficiently solved by rely...
National audienceNous nous intéressons au problème consistant à trouver une politique jointe optimal...
International audienceDans cet article, nous nous intéressons à la résolution de problèmes de collec...
Bandits are one of the most basic examples of decision-making with uncertainty. A Markovian restless...
National audienceReinforcement Learning (RL) for decentralized partially observable Markov decision ...
National audienceSolving a 2-player zero-sum partially observable stochastic game (zs-POSG) typicall...
National audienceNous proposons une approche heuristique pour calculer une politique approchée d'un ...
In PDE-constrained optimization, iterative algorithms are commonly efficiently accelerated by techni...
A wealth of mathematical tools allowing to model and analyse multi-agent systems has been brought fo...
Many problems in machine learning pertain to tackling the minimization of a possibly non-convex and ...
People go through their life making all kinds of decisions, and some of these decisions affect their...
Les processus décisionnels de Markov partiellement observables possibilistes qualita- tifs (π-PDMPO)...
Partially Observable Markov Decision Processes (POMDPs) model sequential decision-making problems un...