This thesis presents new algorithms for two of the fundamental problems that form the bedrock of nonlinear optimization: (i) computation of zeros of smooth functions and (ii) computation of eigenvalues of symmetric matrices. Computing a zero of a smooth function is an old and extensively researched problem in numerical computation. While a large body of results and algorithms has been reported on this problem in the literature, to the extent we are aware, the published literature does not contain a globally convergent algorithm for finding a zero of an arbitrary smooth function. We present the first globally convergent algorithm for computing a zero (if one exists) of a general smooth function. Besides the globally convergent algorithm, we ...
Zadaniem niniejszej pracy jest przedstawienie metody obrotów Jacobiego, która przy pomocy przekształ...
We present new algorithms for refining the estimates of the eigenvectors of a real symmetric matrix....
Abstract. Jim Wilkinson discovered that the computation of zeros of polynomials is ill condi-tioned ...
AbstractA sketch of the standard QD algorithm is followed by the derivation of two similar algorithm...
A new fast algorithm for computing the zeros of a polynomial in $O(n^{2})$ time using $O(n)$ memory ...
In linear algebra, the eigenvalues of a matrix are equivalently defined as the zeros of its characte...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental m...
Praca porusza temat zagadnień własnych, a dokładniej metody obrotów Jacobiego. Jest to iteracyjna me...
Linear eigenproblems continue to be an important and highly relevant area of research in numerical l...
An algorithm is presented for computing the eigenvalues and eigenvectors of an n x n real symmetric...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental ma...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental ma...
Abstract. This paper is the result of contrived efforts to break the barrier between numerical accur...
AbstractIn the year 2000 the dominant method for solving matrix eigenvalue problems is still the QR ...
The computation of eigenvalues of a matrix is still of importance from both theoretical and practica...
Zadaniem niniejszej pracy jest przedstawienie metody obrotów Jacobiego, która przy pomocy przekształ...
We present new algorithms for refining the estimates of the eigenvectors of a real symmetric matrix....
Abstract. Jim Wilkinson discovered that the computation of zeros of polynomials is ill condi-tioned ...
AbstractA sketch of the standard QD algorithm is followed by the derivation of two similar algorithm...
A new fast algorithm for computing the zeros of a polynomial in $O(n^{2})$ time using $O(n)$ memory ...
In linear algebra, the eigenvalues of a matrix are equivalently defined as the zeros of its characte...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental m...
Praca porusza temat zagadnień własnych, a dokładniej metody obrotów Jacobiego. Jest to iteracyjna me...
Linear eigenproblems continue to be an important and highly relevant area of research in numerical l...
An algorithm is presented for computing the eigenvalues and eigenvectors of an n x n real symmetric...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental ma...
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental ma...
Abstract. This paper is the result of contrived efforts to break the barrier between numerical accur...
AbstractIn the year 2000 the dominant method for solving matrix eigenvalue problems is still the QR ...
The computation of eigenvalues of a matrix is still of importance from both theoretical and practica...
Zadaniem niniejszej pracy jest przedstawienie metody obrotów Jacobiego, która przy pomocy przekształ...
We present new algorithms for refining the estimates of the eigenvectors of a real symmetric matrix....
Abstract. Jim Wilkinson discovered that the computation of zeros of polynomials is ill condi-tioned ...