International audienceRandomized algorithms are gaining ground in high-performance computing applications as they have the potential to outperform deterministic methods, while still providing accurate results. We propose a randomized solver for distributed multicore architectures to efficiently solve large dense symmetric indefinite linear systems that are encountered, for instance, in parameter estimation problems or electromagnetism simulations. The contribution of this paper is to propose efficient kernels for applying random butterfly transformations and a new distributed implementation combined with a runtime (PaRSEC) that automatically adjusts data structures, data mappings, and the scheduling as systems scale up. Both the parallel di...