International audienceIn this paper, non-homogeneous Markov-Switching Autoregressive (MS-AR) models are proposed to describe wind time series. In these models, several au-toregressive models are used to describe the time evolution of the wind speed and the switching between these different models is controlled by a hidden Markov chain which represents the weather types. We first block the data by month in order to remove seasonal components and propose a MS-AR model with non-homogeneous autoregressive models to describe daily components. Then we discuss extensions where the hidden Markov chain is also non-stationary to handle seasonal and inter-annual fluctuations. The different models are fitted using the EM algorithm to a long time series...