International audienceWe analyze a four-dimensional slow-fast piecewise linear system consisting of two coupled McKean caricatures of the FitzHugh--Nagumo system. Each oscillator is a continuous slow-fast piecewise linear system with three zones of linearity. The coupling is one-way, that is, one subsystem evolves independently and is forcing the other subsystem. In contrast to the original FitzHugh--Nagumo system, we consider a negative slope of the linear nullcline in both the forcing and the forced system. In the forcing system, this lets us, by just changing one parameter, pass from a system having one equilibrium and a relaxation cycle to a system with three equilibria keeping the relaxation cycle. Thus, we can easily control the chang...
The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking acti...
International audienceThe model proposed by Wilson and Cowan (1972) describes the dynamics of two in...
Relaxation oscillations are highly non-linear oscillations, which appear to feature many important b...
International audienceWe analyze a four-dimensional slow-fast piecewise linear system consisting of ...
The time-interval sequences and the spatiotemporal patterns of the firings of a coupled neuronal net...
The release of luteinizing hormone (LH) is driven by intermittent bursts of activity in the hypothal...
International audienceThe gonadotropin releasing hormone (GnRH) is secreted by hypothalamic neurons ...
Many applications in neuroscience, such as electrical and magnetic stimulation, can be modelled as s...
We use geometric dynamical systems methods to derive phase equations for networks of weakly connecte...
Complexity and dynamical analysis in neural systems play an important role in the application of opt...
As we strive to understand the mechanisms underlying neural computation, mathematical models are inc...
Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-...
38 pages, 16 figures.International audienceIn this work we study mixed mode oscillations in a model ...
Whereas obtaining a global model of the human endocrine system remains a challenging problem, visibl...
The firing rate model in the form of nonlinear integro-differential equations can characterize spati...
The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking acti...
International audienceThe model proposed by Wilson and Cowan (1972) describes the dynamics of two in...
Relaxation oscillations are highly non-linear oscillations, which appear to feature many important b...
International audienceWe analyze a four-dimensional slow-fast piecewise linear system consisting of ...
The time-interval sequences and the spatiotemporal patterns of the firings of a coupled neuronal net...
The release of luteinizing hormone (LH) is driven by intermittent bursts of activity in the hypothal...
International audienceThe gonadotropin releasing hormone (GnRH) is secreted by hypothalamic neurons ...
Many applications in neuroscience, such as electrical and magnetic stimulation, can be modelled as s...
We use geometric dynamical systems methods to derive phase equations for networks of weakly connecte...
Complexity and dynamical analysis in neural systems play an important role in the application of opt...
As we strive to understand the mechanisms underlying neural computation, mathematical models are inc...
Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-...
38 pages, 16 figures.International audienceIn this work we study mixed mode oscillations in a model ...
Whereas obtaining a global model of the human endocrine system remains a challenging problem, visibl...
The firing rate model in the form of nonlinear integro-differential equations can characterize spati...
The Hindmarsh-Rose HR system of equations is a model that captures the essential of the spiking acti...
International audienceThe model proposed by Wilson and Cowan (1972) describes the dynamics of two in...
Relaxation oscillations are highly non-linear oscillations, which appear to feature many important b...