GPGPUs have recently emerged as powerful vehicles for general-purpose high-performance computing. Although a new Compute Unified Device Architecture (CUDA) programming model from NVIDIA offers improved programmability for general computing, programming GPGPUs is still complex and error-prone. This paper presents a compiler framework for automatic source-to-source translation of standard OpenMP applications into CUDA-based GPGPU applications. The goal of this translation is to further improve programmability and make existing OpenMP applications amenable to execution on GPGPUs. In this paper, we have identified several key transformation techniques, which enable efficient GPU global memory access, to achieve high performance. Experimental re...