This paper presents a clustering (Clustering partitions record into clusters such that records within a cluster are similar to each other, while records in different clusters are most distinct from one another.) based k-anonymization technique to minimize the information loss while at the same time assuring data quality. Privacy preservation of individuals has drawn considerable interests in data mining research. The k-anonymity model proposed by Samarati and Sweeney is a practical approach for data privacy preservation and has been studied extensively for the last few years. Anonymization methods via generalization or suppression are able to protect private information, but lose valued information. The challenge is how to minimize the info...