In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem
This paper is a sequel to our previous work in which we found a combinatorial realization of continu...
The study of arithmetical continued fractions has been restricted, for the most part, to the investi...
We display a number with a surprising continued fraction expansion and show that we may explain that...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
AbstractSeveral results on continued fractions expansions are on indirect consequences of the mirror...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
It is widely believed that the continued fraction expansion of every irrational algebraic number $\a...
It is widely believed that the continued fraction expansion of every irrational algebraic number $\a...
AbstractWe prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the co...
AbstractThe following problem was posed by C.A. Nicol: given any finite sequence of positive integer...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
This paper is a sequel to our previous work in which we found a combinatorial realization of continu...
The study of arithmetical continued fractions has been restricted, for the most part, to the investi...
We display a number with a surprising continued fraction expansion and show that we may explain that...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some com...
AbstractSeveral results on continued fractions expansions are on indirect consequences of the mirror...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
It is widely believed that the continued fraction expansion of every irrational algebraic number $\a...
It is widely believed that the continued fraction expansion of every irrational algebraic number $\a...
AbstractWe prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the co...
AbstractThe following problem was posed by C.A. Nicol: given any finite sequence of positive integer...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic cont...
This paper is a sequel to our previous work in which we found a combinatorial realization of continu...
The study of arithmetical continued fractions has been restricted, for the most part, to the investi...
We display a number with a surprising continued fraction expansion and show that we may explain that...