International audienceWe study the scheduling of computational workflows on compute resources that experience exponentially distributed failures. When a failure occurs, roll-back and recovery is used to resume the execution from the last checkpointed state. The scheduling problem is to minimize the expected execution time by deciding in which order to execute the tasks in the workflow and whether to checkpoint or not checkpoint a task after it completes. We give a polynomial-time algorithm for fork graphs and show that the problem is NP-complete with join graphs. Our main result is a polynomial-time algorithm to compute the execution time of a workflow with specified to-be-checkpointed tasks. Using this algorithm as a basis, we propose effi...